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Abstract

The significant ambiguities inherent in the determination of a particular vertical rain inten-
sity profile from a given time profile of radar ccho powers measured by a’'downward-looking
(spaceborne or airborne) radar at a single attenuating frequency are well-documented. In-
decd, one already knows that by appropriately varying the parameters of the reflectivity—
rain-rate (Z — R) and/or attenuation—rain-rate (k— I?) relationships, one can produce several
substantially different hypothetical rain rate profiles which would have the same radar power
profile. Imposing the additional constraint that the path-averaged rain-rate be a given fixed
number docs reduce the ambiguitics but falls far short, of climinating them. While we now
know how to generate as many mutually ambiguous rain-rate profiles from a given profile of
received radar reflectivities as we like, there remains to produce a quantitative measure to
assess how likely each of these profiles is, what the appropriate “average” profile should be,
and what the “variance” of these multiple solutions is. Of course, in order to do this, one
needs to spell out the stochastic constraints that can allow us to make sense of the words
“average” and “variance” in a mathematically rigorous way. Such a quantitative approach
would be particularly well-suited for such systems as the proposed Precipitation Radar of
the Tropical Rainfall Measuring Mission (TRMM). Indeed, one would then be able to use
the radar reflectivities measured by the TRMM radar from one particular look in order to
estimate the most likely rain-rate profile that would have produced the mecasurements, as
well as the uncertainty in the estimated rain-rates as a function of range. Such an optimal
approach is described in this paper.



1 Introduction

The Tropical Rainfall Measuring Mission (TRMM) precipitation radar will be the first of
its kind to measure vertical rainfall distributions from space. The TRMM radar will scan
across the nadir track using a single (13.8 GH1z) frequency. The range-gated backscaticred
powers over the entire scan swath will be measured, averaged, and processed to derive the
rainfall rates. The fact that the data will consist of measured cflective reflectivities at a
single attenuating wavelength implies that the rain-rate retrieval problem will have multiple
solutions. This inherent ambiguity would not pose a significant problem if the difference
between these multiple solutions were known to be small in most cases. Unfortunately, the
opposite is true (see [3], [5], [12], [6]). In fact, it was shown in [6] how, by appropriately
varying the parameters of the reflectivity-rain-rate (Z ~ R) and attenuation-rain-rate (k—R)
relationships, one can produce several substantially different hypothetical rain rate profiles
which would have the same radar power profile. It turns out that cven if one imposes
the additional constraint that the path-averaged rain-rate be a given fixed number, the
ambiguities are reduced somewhat but remain quite significant. While [6] shows how to
generate a continuum of mutually ambiguous rain-rate profiles from a given profile of received
radar reflectivities, there remains to produce a quantitative measure to assess how likely
cach of these profiles is, what the appropriate “average” profile should be, and what the
“variance” of these multiple solutions is. Of course, in order to do this, one necds to spell
out the stochastic constraints that can allow us to make sense of the words “average” and
“variance” in a mathematically rigorous way.

In this paper, after summarizing the results of [6] concerning the extent of the ambiguity
problem, we shall propose a stochastic framework to allow us to restate the problem above in
exact mathematical terms, namely the problem of finding an appropriate “average” profile,
and computing the “variance” of all the other profiles that could theoretically be solutions
to the same inversion problem. We then derive an optimal approach to solve this problem
by determining that rain-rate profile which, on average, best fits the radar measurements.
We also quantify the effect that the ambiguitics have on the rain-rate by calculating the
uncertainty in the estimate, as a function of the measured data.

2 Ambiguities

To make this exposition self-contained, we summarize the results derived in [6] in this section,
and we reproduce some of the examples. In order to approach the problem mathematically,
one needs to model the dependence of the received power on the rain rate itself. In fact, the
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effective reflectivity p(r), measured from range » by a nadir-looking monostatic narrow-band
radar such as TRMM, is proportional to the reflectivity coceflicient Z of the rain at range
7, and to the accumulated attenuation from range 0 to range 7. Calling k(r) (vesp. R(r))
the attenuation coeflicient (resp. rain rate) at range r, we begin with the simple empirical
model that Z = aR® and k = aJ?® for some value of the parameters a, b, o and B, and that
the calibrated reflectivity is therefore given by

p(r) = C(r) - ali(r)'10702 Jg 1(OPat (1)

where C(r) represents the range-dependent calibration constant, which we assume to be
known exactly. Since it is highly unlikely that a, b, & or 8 are ever known exactly, one
would like to quantify the effect on R of an crror in these paramecters. Assuming that thesc
parameters remain constant throughout the rain column it is shown in [6] that two different
sets of rainfall parameters {Ry(r), ao, bo, g, B0} and {I:(r), a1,by, 01, 41} give rise to the
same eflective reflectivity p(r) exactly when
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I, instead of using the directly measured effective reflectivities as our starting point,
we usc the surface-referenced data as in [11], i.c. if we divide p(r) at every range r by (rs),
where r; denotes the range to the surface, it is shown in [6] that two sets of rain parameters
{Ro(r), ao, b, aro, Bo, 00} and {Ry(7), ay, by, o , B1,01} (where o denotes the surface backscat-
tering cocflicient) give rise to the same surface-referenced cffective reflectivitics if
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One can remove the assumption that the Z — R and k — R relations are constant
throughout the rain column, and consider more physical relations by expressing 7, k and 12
directly in terms of the drop size distribution. Specifically, denoting by f,?_* N(D)dD the
fraction of drops per unit volume whose diamecter is between ). and Dy, and, following
Ulbrich ([13]), assuming that N(D) is Idistributed, i.c. that

pm=1 C—])/(.I_)/nt)
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0< D < oo (4)



with the distribution curvature parameter m and the mean drop size D to be determined, it is
shown in [6] that two sets of rain parameters {£20(r), mo(r), Do(r)} and { Ry (), my(r), Di(r)}
give rise to the same effective reflectivitics if
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where F(r) = Hmo(r)+6)[(my(r)+4.27) <"“ (r)Do(r) , 17(r) denotes the derivative of F' with
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respect to r, and ko(r) = 0.026 Lime(r)+4.27) (%) Ro(r) is the attenuation coeflicient

I'(mo(r)+3.67)
for the 0™ profile.

The most striking resemblence between equations (2), (3) and (5) is the fact that the
ambiguities contribute exponentially with range. In fact, by varying the (many) paramecters
n these equations, one can casily produce substantially different rain profiles that would give
the same data. We illustrate this effect by considering a constant rain rate profile Ry = 20
mm/hr, and using the equations to compute profiles that would have produced the same
measurements. For simplicity, we shall assume that the rain parameters are constant. Since
they are not likely to remain constant over long scgments of the rain column, we restrict, our
attention to ranges between r = 0 and r = 3 k.

To illustrate the case where surface-referenced effective reflectivities are used, we con-
sider the two cases where

1) ap=0.02, a; = 0.03, Bo = 0.98, B; = 1.08, by = 1.4, and op/0y = 1.5ap/a,.
2) ap=10.03, ay = 0.02, Bo = 1.08, B; = 0.98, by = 1.6, and 0o/0y = 0.75a0/a;.

Figure 1 shows the two corresponding profiles, obtained using equation (3). Assuming that
the parameter a is known exactly (i.c. that ag = a;), these two cases show how a relatively
small error in the value of the surface backscattering coeflicient o can lead to significantly
different derived rain rate profiles. Indeed, in the first case, a 1.7 dB decrease in oo (which
corresponds to ggf/o; = 1.5), along with small changes in the remaining parameters, can
result in an underestimate R, of the true rain rate Ito = 20 that is off by Ro/1Ry >~ 1.66,
or about 66 %. Yet, in this case, the total path-integrated attenuation is 1.13 dB for the
0 profile, and 0.98 dB for Ity, showing no exploitable difference. Similarly, the second case
shows that increasing oo by 1.2 dB (so that oo/oq1 = 0.75), along with small changes in the
other parameters, can produce an overestimate of the rain rate o which is off by close to
Ry/Ro ~ 1.85, or about 85 %. Allowing for uncertaintics in the parameter a only aggravales
the ambiguity.



To illustrate the case where the drop-size-distribution model is used with the directly
measured effective reflectivities, we keep the constant profile Ry = 20 mm/hr, and examine
the following two cases:

3) mop = 4, 730‘:—' ]5, my :2, D—l =1.
4) mo =2, Dy =2,my =4, D; =1.5.

Figure 2 shows the graphs of It; in cach of these two cases, as given by cquation (5). Again
in this case, the path-integrated attenuation for the two profiles is not significantly different:
an additional attenuation measurement would not, be suflicient to distinguish between these
two cases.

Before considering solutions to this problem, we note one additional important impli-
cation of the ambiguities problem, namely that one should be very careful in evaluating the
performance of any particular rain-retrieval algorithm. Indeed, the conventional method of
postulating a profile, simulating the resulting ccho power data, running them through the
algorithm of interest, then comparing its estimate with the original profile scems less than
satisfactory, once one realizes that the particular data used could have been produced by a
continuum of rain profiles, and that, therefore, the fact that one’s algorithm can select one
of these profiles (rather than any of the other, a priori equally possible, ones) is not in itself
a mecasure of good performance. A sensitivity analysis of the algorithm at hand docs not
suffice to measure the accuracy of the algorithm, either. Heuristically, a sensitivity analysis
only measures how “sure” the algorithin thinks it is of its answer, rather than how “correct”
the answer is. Expressing these concerns in more rigorous terms is difficult as long as the
rain retrieval problem remains a deterministic onc: indecd, in the deterministic case, we
know (with probability 1) that the rain-retricval problem has a continuum of substantially
different solutions — we have no mechanism for identifying a “correct” answer.

In fact, now that we can write down all the deterministic ambiguous profiles giving rise
to the same data, it would be interesting to describe the likelihood of occurence of each one,
given somce reasonable assumptions about the physics governing the problem. With these
concerns in mind, let us try to restate the problem in stochastic terms in order to introduce
a “mcasure” on the set of all ambiguous profiles giving risc to the same effective reflectivity
profile, and try to find the “average” of this set, along with some measure of the average
difference between its memboers.



3 A minimum-variance algorithm

Let us begin by formulating the problem mathematically. First, we specify all the variables
that enter into the problem, and all the hypotheses that we are making about them. Namely,
we are trying to estimate the rain rate I(r) as a function of range r. According to our first
simple model (1), along with this first variable (), we have four others: a, b, @ and B. What
a priori assumptions can we make about these variables 7 Regarding the continuous variable
R, we will eventually want to estimate the rain rate at specific discrete ranges. Nevertheless,
we should avoid discretizing the range interval until we actually implement our eventual
algorithm. The reason is simple: once the unknown function R of the continuous variable r
is replaced by discrete unknowns I; (representing the values of I? at sampled range points
i+ Ar), it becomes very difficult to put back into the problem the chronological order relating
R; and R;y; and any continuity assumption about 1. Instead of discretizing 12 at the outset,
and resorting to an ad hoc artifice to force each ;41 to be “rcasonably” close to R;, we shall
build into the problem the assumption that 1 is a continuous function of range. In fact, for
simplicity, let us assume that R(r) is a piecewise linear function of r. This means
that the slope s(r) of R(r) is piecewise constant. We would be hard pressed to specify
a priori what values s must take, or, indeed, over what range intervals it should remain
constant and at what range points it can change values. This is the first source of stochastic
behavior in our problem. We will try to make more mathematically rigorous assumptions
about it below. As to the remaining variables «, b, « and 3, according to the model
(1), we shall assume that each of them has a constant, albeit unknown, value.

Second, we need to specify the data that we have at our disposal, along with the relation
between the data and our variables. According to the model (1), the data will consist of the
backscattered power along the radar path. Specifically, let us use the logarithm y(r) of the
backscattered power:

y(r) = log(C(r)- p(r)) with p(r) as in cquation (1),
= log(C(r)) + log(a) + b log(R(r)) — 0.210g(10) o /0 R)PdL + oN(r), (6)

where log(C(r)) represents the calibration constant which we assume to be known as before,
The quantity N(r) represents a noise term affecting our data, with ¢ the r.m.s. noise Jevel.
We have chosen to pool into the single additive term N all the sources of error that contribute
multiplicatively to the received power p. These include mainly Rayleigh fading effect due
to the fact that the backscattered cross-section is duc to a multitude of scaticrers whose
distribution within each range volume is unknown and whose echocs have unknown relative
phases. This is the second source of stochastic behavior in our problem. To be complete,
we should include the effects of system noise, which contributes additively to the measured
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power p. We should also make a more mathematically rigorous assumption about the law
governing N. We will try to do that below.

Now that we have identified our variables, the a priori constraints on them, and the
relation between our data and our variables, we arc ready to state {he problem: namely,
given these (deterministic and stochastic) constraints and given a particular set
of (noisy) data, we would like to obtain the optimal unbiased minimume-variance
estimate of our variables. That Is, given some particular data, we want to derive an
estimate of R(r) which makes the best usc of the information at hand, by being on average
(i.e. in the r.m.s. sense) closest to the mean of all the rain profiles that obey the specified
constraints and that can be considered possible fits for the data at hand. Writing X (r)
for the vector consisting of all our variables at range r, equation (6) can be rewritten as
y(r) = f(X() + o- N(r), and our problem can be solved if we can derive an algorithm to
obtain the conditional expectation of X(r) given all the measurements y(r).

This estimation problem bears a definite resemblance to the typical problem solved by
the Kalman-Bucy filter (see for example [8]). Indced, in both cases we are given a set of
observations at a sequence of times (the sequence of increasing ranges in the case of the
radar data). Then, knowing how these observations are aflected by the variables which
we are trying to estimate (i.c. knowing the formula (6) relating the measured data to the
values of our parameters), and knowing the constraints that must be obeyed by the variables
themselves, we want to design an algorithm that will estimate as best can be the value of
our variables at every point in time (i.e., in our case, range), especially the value of the rain
rate itself. The algorithm can (and indeed should) make use of all past information in order
to refine at each range step its best estimate for the new value of the rain rate. Thus, this
“filtering” would be expected to make up for the inevitable shortcomings of any attempted
noise-reduction procedure applied to each individual picce of range-compressed data. The
Kalman filter is just such an algorithm, except that it applics only to the lincar case, where
the effect of the variables on the data is a lincar function of the variables. In the problem
al hand, that is of course not the casc: as i1s evident in equation (6) the mathematical
function f expressing the relation between the data and our variables is far from linear.
Fortunately, a generalization of sorts of the Kalman filter to the non-linear case does already
exist. Indeed, one can write down the equation that must be solved in order to obtain the
“optimal” filter (in the same least-squares sense as the Kalman case) which, when fed a set of
not-necessarily-linear observations, will produce the best estimate of the required variables.
The equation in question is the Zaka; cquation, a second-order stochastic partial differential
cquation whose solution is the conditional density function for our variables, conditioned on
the data (a summary is provided for completeness in the appendix - for more details, sce
[7], [8], [10], [14]). This result has so far not been widely applicd because Zakai’s equation
is, in typical cases, quite diflicult if not, impossible to solve, exactly or numerically.



Fortunately, in the case at hand, it turns out that it is in fact possible to solve the
corresponding equation for the conditional density function, once we have made some simple
assumptions about the stochastic behavior of the rain-rate slope variable s, and of the
noise term N in the observations. Specifically, we constrain the slope s of the rain rate
to be piecewise constant, as before, with slope changes occuring at a mean frequency of )
changes per unit range, and with the new slope s related to the previous slope s’ at every
slope change in such a way that the difference s — o' is, for simplicity, 0-mcan Gaussian
with a specified variance o’ As long as A and o, arc strictly positive, this assumption
about the rain rate profile simplifies the problem without, losing any generality: indeed,
any continuous function R(r) can be approximated arbitrarily closely by a rain rate profile
satislying our simple constraints. As to N, we shall simply assume that it is a standard
normal. This is justifiable by noticing that, if our data consists of the averaged power due to
M independent pulses, N would be the average of the squared-magnitudes of M independent
standard complex Gaussian variables. Hence, as soon as M > 4, it is quite reasonable to
assume that N is itself approximately a standard normal variable, and that o? ~ 1/M.
Under these assumptions, and after introducing an additional variable o(r) = [§aR(t)Pdl
representing the accumulated attenuation up to range 7, one can indeed write down the
Zakai differential equation governing the evolution with r of the conditional density function
Pl.(c, R,s,a,b,0,p) at range r, conditioned on the data {y(1), t < »}, and, in fact, solve
it exactly. Indeed, in the appendix, we show how, starting with P|,_,,(c, R,s,a,b,a,p) at
any range ro, one can account for all the data y(r) with rg < 7 < 7y to calculate the density
function P|,,, (e, R,s,a,b,a, B) at any range r; > rq.

Armed with this algorithm, our strategy is as follows:

e Start with an a priori density function Plr=o(c, R,s,a,b,a, ) which, for lack of any
more precise knowledge, is uniform in R (resp. a, b, a, B) over a pre-determined range
[Rmim Rmax] (TCSP- [amim amax], [bmin, bmax]a [amina amax], [ﬂmim ,Bmax])’

¢ update P|, by using our algorithm to incorporate cach new picce of data with increasing

range 7, from r = 0 down to r = r, = the range of the surface, at which time Pl
would be the density function for R(r;) conditioned on all the data,

* update P|, backwards by starting with P|,, as the initial density function, running »
backward, and using our algorithm to obtain P|, at all » < Ts.

Once the conditional densitics P, have been computed at cvery range point 7, the conditional

mean R(’) _ ///////]g’Plr(c,R,s,a,b,a,ﬁ)dcd]ids(la(lbcla'(l[)' (7)

gives the estimate of the rain rate at range r, and the conditional variance

o(r) = ///////(R~]Ai(r))?Plr(c,]i’,,s,a,b,(y,ﬂ)(ch]{([sda(11)(1(1'(1[7’ (8)

8



is the corresponding estimate of the variance of the rain rate al range 7.

Before going on to the applications, note that the algorithm that we propose requires
a larger amount of computation than the corresponding “extended” Kalman filter would
require. Indeed, there are several ways to extend the lincar Kalman filtering procedure to
non-linear problems such as the on ewe have, by making appropriate linearizing approxima-
tions. The resulting extended Kalman filter would produce an algorithm wihch calculates
the moments 12(r) and d(r) directly (along with the means and covariances of all our re-
maining variables ¢, s, a, b, a and ), without having to calculate the full density function
P of the variables at every range step. While the extended Kalman filter approach would
produce a fast-running computer code, the full Zakai-cquation approach gives us one signif-
icant advantage: namely, the conditional density function that it computes can be used as
a new a priori probability density function for the rain parameters, accounting only for the
radar measurements. Any additional data can then be used to refine the estimated of these
parameters by further conditioning P on the new data. In addition to obtaining estimates
of our parameters that are optimal up to the various approximations made, we can perform
the optimal fusion of the radar data with any other data that becomes available, such as
radiometer measurement of the brightness temperature at various frequencics.

Before going on to the applications, we also note that the algorithm described above
relics on the model given by equations (1) and (6), where the Z — R and k — R relations
were assumed to be power laws with constant (if unknown) cocflicients. We chose these
constant power laws in order to study the approach under the simplest assumptions. The
minimum-variance approach itself, however, can be applied with any set of initial hypotheses.
Indeed, the equation for the conditional density function in the case where one assumes a
range-dependent I'-drop-size-distribution can be derived in a similar fashion, and its solution
would allow one to calculate the rain-rate estimate and jis variance for this more realistic
model of the relation between the rain and the radar quantities. Preliminary results that we
have obtained in this direction are encouraging, and we intend to report on our progress in
further publications.

Finally, we assumed in equation (6) that the range-dependent calibration term C(r) was
known exactly at every range r. If this is not the case in practice, the uncertainty in C(r) can
be incorporated into the noise term, by appropriately increasing o in (6). In fact, additional
sources of error, such as additive system noise, can also be incorporated. For cxample, in the
typical case where the system noise voltage is white, the sumn of the voltage duc to system
noise with the voltage due to rain echo will again be Gaussian, and its power will be the
sum of the powers of the two summands. In this case, equation (6) would become

y(r) = log ((C(r) - p(r)) 4 02) 4 o N (9)
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with C(r) the known range-dependent calibration constant, o2 the known constant system
noise power, p(r) the formula relating the effective reflectivity to the rain parameters of
whatever rain model one wishes to use (formula (1) for example), and o? ~ the inverse of
the number of effective independent pulses averaged in cach look.

4 Applications

In this section, we apply the approach developed in the previous scetion to some typical
examples. In each case, we will be interested in processing effective reflectivities at discrete
ranges, and obtaining rain rate estimates at discrete ranges. While the exact mathematical
details are given in the appendix for the continuous case, discretized versions of P and of the
equation governing its evolution are not difficult to write down. For our purposes, we shall
use the following approximate discretization of the formula for P given in the appendix:

Pris(e, R, s,a,b,a,8) = (’P,(c’, I\ s,a,b,a,8) + X Yo P RS a,b, Bg(s— s')) e~
5 (10)

which tells us how to compute the unnormalized version P’ of P at range r + 6, given P at
range 1, and given the logarithm y(r + 6) of the received power, averaged over M pulses. In
equation (10), we used the abbreviations H, R for

H

I

1
527 (108(C(1)al?*107°% 4 62) — y(r 4 ),

c-—a"/Zof

g\x = =,
( ) \/2mo?
d = ¢c— alR- s6/2)Ps,
R = R — s6.

The normalized density function Pr4s is obtained by dividing P',1s by the normalizing

constant Z > E > Z > Z Plrys(c, Ry s, a,b, a, B). The parameters which the user must
Cc R s a b (<3 Jéj

specify as input to the algorithm are the calibration function C(r), the system noise power
o2, the number M of effectively independent pulses averaged in one look (so that we may
sct 0% = 1/M), the average frequency A of the rain-rate slope changes, and the r.an.s. value
os of the slope diflerence s, — Sold When a slope change does occur. Formula (10) itsclf
is relatively easy to implement, numerically. 1t clearly shows that the algorithm proceeds
al every new range in two steps: first, it smoothes P in order to account for the possible
changes in the local slope of 12, then it multiplies the resulting smoothed function by weights
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that are largest for those values of the parameters that best fit the received data. It s
interesting to note that this two-step process is very similar to other proposed methods for
approximating the solution to the general nonlinear filtering problem ([7]). Let us now look
at specific examples.

Our first application is the serendipitous observation that if we force the a priori un-
known constants a, b, o, to take on know values ao, by, g, Bo, i.e. if we set the interval
bounds Amin = Gmax = qg, bmin = bmax = bO, Qmin = Qupax = Q, ,Bmin = ,Bmax = ﬂO, our algO-
rithm becomes in effect a numerically stable Hitschfeld-Bordan rain-rate retricval algorithm!
As an illustration, we considered the reflectivity profile that would be produced by the con-
stant rain rate Ky = 20 mm/hr over the range 0 < » < 3 km, as in the examples in section
2, this time with ao = 300, b, = 1.5, ag = 0.026, By = 1.08. We synthesized the effective
reflectivity as it would be measured every é = 0.05 km, asuming that M = 50 pulscs are
averaged so that o = 1/v/50 ~ 0.14. We assumed that Lhe calibration constant was known
exactly, that there was no system noisc, and that the only remaining inputs to the retrieval
problem, aside from the synthesized data, were the initial density function Plr=o(c, R, s) and
the rain-rate constraint parameters A and o,. We started with Pr=o uniform in R over the
range 0 < R < 50 mm/hr, uniform in s over the range —40 < s < 40 (mm/hr)/km, and a
-function in ¢ (since the accumulated attenuation at range 0 is always 0 with probability
1). As to the remaining two parameters, we decided to vary their settings over a range of
realistic values, namely 1/2<X<20and 1< 056 < 10. Heuristically, the value \ = 0.5/6
implics that we know a priori that the (piccewise constant) slope of the rain rate profile can
change once every 26 units of range on average, allowing for slow changes only, while the
value A = 20/6 implies that slope of the rain rate profile changes about 20 times between
two consecutive measurements, which allows for many readjustments in the slope. While the
parameter A constrains the Jrequency of the allowable variations in the profile as a function
of range, the parameter o, restricts the amount of variation when it does occur. The value
os = 1/6 implies that the allowable change in slope has an r.m.s. value of 1 mm/hr per
6 = 50 m of range, while the valuc o, = 10/6 implics that the r.m.s. change in slope is 10
mm/hr per 50 m of range. In practice, one should keep in mind that our discrete sampling
strategy forces o, to remain between the original bounds 1 < ¢,6 < 10.

Figure 3 shows the two estimated rain rate profiles Ry(r) (i = 1,2) that were obtained
by our algorithm using the inputs above with A§ = dand 0,6 =10 fori = 1, and A6 = 20
and 036 = 2 for i = 2. The crror bars are the values of the square root of the estimate of
the conditional variance o, () for the casc i = 1. These graphs are typical of the profiles
we obtained by varying A and o, over the range of values given above. The variance was
smallest when when we gave A and o, the smallest values in their respective ranges, and
they were largest when A and o, were largest. The smallest value we obtained for Vo(r)

was 0.59, the largest 1.6 mm/hr. The bias in the cstimate R(r) itself never exceeded 1
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mm/hr. While this bias is due to the approximations and the discretization, the variance
is the truc variance of the cstimate. Yet we have assumed that the rain paramcters a, b,
o and S were known exactly in this case. They cannot be the source of the uncertainty.
The only remaining source of ambiguity is the noisc in the data. Let us cxamine this noise
term in more detail. Since the rain rate is constant in this casc, cquation (6) shows that
the two terms that vary in the measurements from one range point to the next are the
noise term o N and the incremental attenuation ~ 0.210g(10)arR26, which is approximately
(0.2) - (2.3) - (0.026) - (25.4) - (0.05), or about 0.0152. Compared to o = 0.14, this is a very
small quantity indeed to try to estimate exactly. The variance estimated by our algorithm
is a direct result of this discrepancy between the size of the incremental attenuation and the
noise in the measurements. It is thercfore natural that this variance is reduced when we
tighten our constraints (by appropriately decreasing the values of A and 0s) to in effect help
the algorithm by telling it that the profile is almost surcly constant,

While the case of a constant rain rate profile is a good example because of its simplicity,
it is not very realistic. Indecd, no real data will show a spontancous jump in the measured
reflectivity, from no data to the kinds of numbers associated with 20 mm/hr of constant rain.
Keeping all the other parameters exactly as above, we considered three different, somewhat
more realistic, rain rate profiles by synthesizing the effective reflectivity profiles that they
would produce: case A where the rain rate increases lincarly from 3 to 21 mm/hr; case B
where the rain rate increases linearly from 3 mm/hr at range » = 0 to 21.5 mm/hrat r=1.5
km, then decreases linearly to 6.5 mm/hr at » = 3 km; and a saw-tooth case C, where the
rain rate increases linearly from 3 mm/hr at range r = 0 to 30 mm/hr at 7 = 1.2 km, rapidly
decreases linearly back to 3 mm/hr at r = 1.5 km, and repeats the pattern to » = 3 km.
Iligure 4 (resp. 5) shows the estimated rain rate profiles Ri(r) (i = 1,2) using our algorithm
with the input above and A6 = 5 and 0,6 = 10 for i — I, and Aé = 20 and 0,6 = 2 for
t = 2 {or case A (resp. case B). As before, the error bars are the values of the square root of
the estimate of the conditional variance b1(r) for the case i = 1. Figure 6 shows the exact
saw-tooth profile of case C, and the estimated rain rate profile for A6 = 5 and 0,6 = 2, along
with the corresponding estimate of the standard deviation. It is interesting to note that
while the estimate seems quite good on the up-slopes, it is consistently below the true value
on the down-slopes. This is due to the a priori constraint on our variable s: indeed, the
assumption —40 < s < 40 mm/hr per ki limits the allowable rain rate profiles to changes of
no more than 12 mm/hr over 300 m - but on the 300m-down-slope of our saw-tooth profile
the rain rate decreases by 27 mm/hr ! Once we expand the range of s appropriately, our
algorithm produces an estimate that is much closer to the true rain rate, as the previous
examples would lead us to expect. This is evident in figure 7, where we plot the rain rate
profile estimated by our algorithm with the same inputs as before, except that s is now
allowed to range over the interval [—100, 100] mm/hr/km.



Let us now examine what happens when we allow the variables a, b and a to be unknown.
We selected the reflectivity profile of case B, the more realistic of the four cases that we
considered above. While the reflectivitics were synthesized using the values a = 300,6=1.5
and « = 0.026, the algorithm was told only that @ was in the interval [200,400], b was in
the interval [1.4,1.6], and that o was in the interval [0.018,0.034). We started with Pr—o
uniform in R over the range 0 < R < 50 mm/hr, uniform in s over the range —40 < s < 40
(mm/hr)/km, and a §-function in ¢ as before. For A and 05, we decided to use values in the
middle of the ranges considered in the previous examples, namely A8 = 5 and 0,6 = 2 mm /hr
(with § = 50 meters). Figure 8 shows the rain rate profile estimated by our algorithm, along

with the estimated r.m.s. uncertainty v/ 0(r). One might notice that the ambiguity seems
to increase almost lincarly with the rain rate values. In fact, the relative r.m.s. uncertainty

f)(r)/fi(r) varies between 20 and 36 % in this case. The two curves framing our estimate
are the rain rates that give the same echo profile when a = 0.034 (top curve), and when
a = 0.018 (bottom curve). While the estimated rain rate profile itself does lie between these
two extreme curves, it appears to be significantly larger than the original rain rate (sce figure
5). As was pointed out earlier, comparison with the original rain rate profile is not a truc
measure of the effectiveness of the algorithm. Rather, we must check that the estimated
reflectivities are close to the actual reflectivity profile. Figure 9 shows the dBZ values for the
synthesized profile as well as for the echo profile estimated by our algorithm. It is reassuring
to note that the estimated echo profile does remain within 0.3 dBZ of the actual ccho profile.
This implies that the echo profile produced by our estimated rain values is within 4 7 % of
the actual (synthesized) echo at all ranges.

The next four figures illustrate the effects of changing the constraints on our state
variables. Figure 10 shows the estimated profile and r.m.s. uncertainty when the constraint
on the variable « is changed 10 0.026 < o < 0.034. The estimate is higher than the previous
one because increasing the attenuation rate allows the rain rates to increase without changing
the echo power. The relative uncertainty in this case varics between 18 and 39 %. These
values are comparable to the ones obtained in the previous case, in spite of the fact that the
interval over which « is now allowed to range has shrunk by 100 %. This scems to imply
that the relative r.m.s. error does increase when the rain rate values increase. The next case
confirms this trend. Figure 11 shows the estimated profile and r.m.s. uncertainty when the
constraint on the variable « is 0.01 < a < 0.026. The estimate is below the previous ones,
reflecting the fact that a decrease in the attenuation rate implics a corresponding decreasc
in the rain rates that can produce a given ccho power. The relative uncertainty in this case
varies between 19 and 30 %, a range somewhat smaller than the one that was obtained
under the assumption 0.018 < « < 0.034, although the intervals for a in these two cascs
have the same width. The plots of the echo profile corresponding to figures 10 and 11 arc
indistinguishable from the one of figure 9. Finally, figure 12 shows the cstimated profile and
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r.m.s. uncertainty when the initial constraint on the rain rate variable I itself is changed to
0 < R < 25, keeping « in the original range [0.018,0.034]. The corresponding drop in the
estimated rain rate profile is accompanied by a decrease in the r.m.s. uncertainty to values
between 17 and 27 %. Figure 13 shows the estimated echo profile for this case: it is quite
similar to the one of figure 9, except that the difference between the estimates and Lhe actual
ccho never exceeds 0.27 dBZ in this case. This implics that the echo profile produced by our
estimated rain values in this case remains within £ 6 % of the actual effective reflectivity
profile.
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A Appendix: the Zakai equation

Here is a simplified summary of those results of non-lincar filtering which we will need. For
a complete account, sce for example [7], [8], [10], [14]. Assume that X(t) is a stochastic
process in R" satisfying the stochastic equation

dX (1) = h(X(0))dt + g(X(1))dB(1) (11)

where o : R" — R"and g : R™ — {nxm matrices } are twice-diflerentiable functions, and
B(t) is standard Brownian motion in R™. Assume we have observations Y (1) (a stochastic
process in R) which obey
dY (1) = f(X(1))dt + adb(1) (12)
where o is a real constant, f : R* — R is a differentiable function, and b(t) is standard
Brownian motion in R. Assume further that B(t), b(t) and X (0) arc independent for all ¢
diflerent from t'. Given an initial density po for the states of X(0), the conditional density
p(t,z | Y(s)s < t) for X(t), given all Y(s) up to time ¢, must satisfy the (Zakai) equation
% _pp—Lyw-vps Lo pvay; (13)
ot~ P T Pz 4
where p and p are related by p(t,) = K(1)e¥ 7@/ 5(1 2) in which the function K takes
that value making [ p(t,2)dz = 1 for all ¢, and where the opcrator 1) is given by
Dp= 25 ((96™)5p) = - Vo — (div(h)p— |1 (19)
2 45 Oz:0z; Y 202

(here g7 denotes the transpose of the matrix g, and div(h) denotes the divergence of 1), the
opcrator 1)’ is given by

D= 1f, D (15)
(where the term on the right refers to the commutator of the two operators “multiplication
by f7 and D), and the operator D" is given by

D' = 21, [f, D)o (16)

Once p has been computed by solving the Zakai equation with initial condition pli=o = po, the
required conditional expectation £{X(1) | Y (7),0 < 7 <t} can be computed by performing
the integral E{X () | Y(7),0 <7 <1} = [ap(,2)dz. Note that if f,g and k arc lincar, i.c.
when the filtering problem is lincar, Kalman showed that the conditional expectation can
then be calculated directly by solving a coupled system consisting of a lincar cquation in n
variables driven by the observations, coupled to a Riccati equation in n(n + 1)/2 variables
involving the second moment only. That is infinitely more manageable than having to find
the function p of n + 1 variables solving the Zakai partial differential equation.
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B Appendix: Solving the Zakai equation

In our case, the “time” variable is actually the range r. Morcover, X(r) is the vector
(c(r), R(r), s(r), a,b,, B), with the constraints that de = aRPdr, dR = sdr, that a, b, «
and f are constant, and that the slope s(r) is a jump process taking independent valucs, with
density g, which are constant between the jumps of a Poisson process of rate A. Heuristically,
this means that the graphs of the rain rates that we consider are broken line segments,
with slope changes at a sequence of ranges {r1,72,73,...} such that the segment lengths
T1,T2 ~ 1,73 — T'2, ..., are distributed according to a Poisson distribution of mean 1/, and
such that the new slopes at each “break” are distributed according to a prespecified density
function g. The introduction of ¢(r) as an additional state variable is technically necessary
in order for the stochastic process X(r) to be Markov. Finally, writing Y (r) = [§ y(»') dr’,
with y as in equation (6) of section 3, we assume that

dY (r) = f(X(r))dr + odb(r) (17)
where “db/dr” would be the white noise process, and where
J(e, 1t,s,a,b,0,8) = log(C(r) - aR® - 10702 4 o) (18)

with C(r) the known calibration constant, and with o, (resp. o) the known additive system
noise (resp. multiplicative fading noise) variance.

Under these assumptions, the Zakai differential cquation (13) governing the evolution
with r of the unnormalized conditional density function Pr(c, R, s,a,b,a, B) conditioned on
the data {y(»'), ' < r} is

aﬁ:_Rﬁgg_ oP 1

B alt’ SIR ﬁ]«;(c, R, s,a,b,a,8)P + A / Ple, R, s, a,b,a,8)g(s—s')ds’

(19)

where the function F(r, ¢, R, s,a,b,a, ) is given by

F =1y 2(aliﬁg—£ + sg]]%))’(r) + A (20)

A natural attempt to solve this equation is to use the “cascade” approach. Specifically,
we write P = 37,54 PM, and require that cach P satisfy

H(n) () (n) 1 . .
o = et I L B [ 0 Bl )
r C o
(21)
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where PED s assumed Lo be identically zero. This is justified because the requirement
that P satisfy equation (19) is exactly cquivalent to the requirement, that cach P satisfy
cquation (21).

The introduction of the index n makes it possible to solve our problem exactly. Indeed,
the system of inhomogenecous first order cquations (21) can be solved by induction, using
the method of characteristics. Ior example, (21) with n = 0 is a homogencous cquation
with no forcing term (because P~ s identically 0): it can thercfore be solved casily using
characteristics. In fact, its solution is

R — (R~ sr)Pt

'ﬁSO)(QR’S?a’b’a’ﬂ):,PIT-:O(CMQ S(,B'f—]) ,R—sr,s,a,b,a,ﬁ) (22)
r RB+Y _ R — s(r — '))8H
“ exp (*i;/g F@'ic—a t (sg(ﬂ :(]7) ) IR —s(r—1'),s,a,b, a,ﬁ)dr')

where the initial density P|,¢ is assumed known. Practically, a slightly more general version
of this equation, relating P at range r; to P at any range ro < 1y, would be useful. Such
an expression can indeed be written down. To keep the formulas relatively uncluttered, we
shall use the notation
AN R — (R — sAr)PH
d(Ar) = c—a BT , (23)
R'(Ar) = R— sAr. (24)

Using this notation, the general solution P {0 cquation (21) for any n > 0 can be written
as

=~ R Y L A O T e s,a,b,a,B)dr’
Pgl)(ca R,s,a,b,a,ﬂ) = PS:)(CI(TI”‘TO))]fl(rl_r()), s,a,b,a,ﬂ)c 207 frﬂ P ra=rt) (=) b f)d
(25)
71 -~ LS Y ] Hoe ol N
+/\/ (/ PUD( (ry — 1), R(ry — ), ', a, b, o, B)g(s— S')d5'> 507 ) EE S =r) R =) siabon)dr
ro

keeping in mind that P is zero.

That these formulas for P do give solutions to the prescribed equations (21) for P
can be verified directly. One can then reconstitute P itself by adding all these equations
together. Remarkably, the equation one then gets is exactly this last cquation without the
index n ! Indeed, the left-hand-sides add up to P at range r, and the right-hand-sides involve
the values of P at carlicr ranges. In our case, one can thus compute P by “recursion” on 7,
starting with a given P|,—o, applying the formula
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N ==Ly [TV (e (ry =), R (r1 = ') 5,0 b0 B)
’P,](c, ]{,s,a, b,a,ﬂ) — 'PTO(CI(T)*7'0))]‘3,(7'1*7'0)3 s, a, b,a,[)’) ¢ mfro B’ (r1=2"), R/ (r1=1"),5,0,b,00, 3)d
) r (26)
+)\ / </ ?ET(C,(T‘] - 7‘), ]z/(7‘1 - 'I‘)) Sl) (t, b, (Y’ ﬁ)g(s - Sl)dsl) Ch m ‘fr ]"(TI’C’(TI_N)’I{I(T] —7"),3,a,b,(1,ﬁ)d7"d1‘
o

repeatedly, and using the fact that P and P are related by P = K"/ P with K = that
scalar that makes P integrate to 1.
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Figure 2: DSD curves
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